Tetsu MASUDA

Department of Physics and Mathematics, College of Science and Engineering
Aoyama Gakuin University,
5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa, 252-5258 Japan

* Switch to Japanese


Publications

  1. A q-analogue of the higher order Painleve type equations with the affine Weyl group symmetry of type D
    T. Masuda
    Funkcial. Ekvac. 58 (2015) 405-430.

  2. An explicit formula for the discrete power function associated with circle patterns of Schramm type
    H. Ando, M. Hay, K. Kajiwara and T. Masuda
    Funkcial. Ekvac. 57 (2014) 1-41: arXiv:1105.1612v2.

  3. Bilinearization and special solutions to the discrete Schwarzian KdV equation
    M. Hay, K. Kajiwara and T. Masuda
    J. Math-for-Ind. 3 (2011) 53-62.: arXiv:1102.1829

  4. Hypergeometric τ-functions of the q-Painleve system of type E8(1)
    T. Masuda
    Ramanujan J. 24 (2011) 1-31: 2009-12, Kyushu university, 2009

  5. Hypergeometric τ-functions of the q-Painleve system of type E7(1)
    T. Masuda
    SIGMA 5 (2009), Paper 035, 30 pp.: arXiv:0903.4102v1

  6. The anti-self-dual Yang-Mills equation and the Painleve III equation
    T. Masuda
    J. Phys. A 40 (2007) 14433-14445.

  7. Point configurations, Cremona transformations and the elliptic difference Painleve equation
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
    Seminaires et Congres 14 (2006) 169-198: nlin.SI/0411003.

  8. q-Painleve VI equation arising from q-UC hierarchy
    T. Tsuda and T. Masuda
    Comm. Math. Phys. 262 (2006) 595-609.

  9. Special polynomials associated with the Noumi-Yamada system of type A5(1)
    T. Masuda
    Funkcial. Ekvac. 48 (2005) 231-246.

  10. The anti-self-dual Yang-Mills equation and classical transcendental solutions to the Painleve II and IV equations
    T. Masuda
    J. Phys. A 38 (2005) 6741-6757.

  11. Construction of hypergeometric solutions to the q-Painleve equations
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
    Internat. Math. Res. Notices 24 (2005) 1439-1463: nlin.SI/0501051.

  12. Cubic pencils and Painleve Hamiltonians
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
    Funkcial. Ekvac. 48 (2005) 147-160: nlin.SI/0403009.

  13. Classical transcendental solutions of the Painleve equations and their degeneration
    T. Masuda
    Tohoku Math. J. 56 (2004) 467-490: nlin.SI/0302026.

  14. Hypergeometric solutions to the q-Painleve equations
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
    Internat. Math. Res. Notices 47 (2004) 2497-2521: nlin.SI/0403036.

  15. 10E9 solutions to the elliptic Painleve equation
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
    J. Phys. A 36 (2003) L263-L272: nlin.SI/0303032.

  16. On a class of algebraic solutions to the Painleve VI equation, its determinant formula and coalescence cascade
    T. Masuda
    Funkcial. Ekvac. 46 (2003) 121-171: nlin.SI/0202044.

  17. On the rational solutions of q-Painleve V equation
    T. Masuda
    Nagoya Math. J. 169 (2003) 119-143: nlin.SI/0107050.

  18. A determinant formula for a class of rational solutions of Painleve V equation
    T. Masuda, Y. Ohta and K. Kajiwara
    Nagoya Math. J. 168 (2002) 1-25: nlin.SI/0101056.

  19. Determinant formulas for the Toda and discrete Toda equations
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada
    Funkcial. Ekvac. 44 (2001) 291-307: solv-int/9908007.

  20. On the Umemura polynomials for the Painleve III equation
    K. Kajiwara and T. Masuda
    Phys. Lett. A 260 (1999) 462-467: solv-int/9903015.

  21. A generalization of determinant formulae for the solutions of Painleve II and XXXIV equations
    K. Kajiwara and T. Masuda
    J. Phys. A 32 (1999) 3763-3778: solv-int/9903014.

  22. Extraction of stationary axisymmetric asymptotically flat space-time
    T. Masuda
    J. Phys. Soc. Japan 68 (1999) 43-45.

  23. Neugebauer-Kramer solutions of the Ernst equation in Hirota's direct method
    T. Masuda, N. Sasa and T. Fukuyama
    J. Phys. A 31 (1998) 5717-5731.

  24. Limit manipulation between the cylindrical Toda equation and the cylindrical KdV equation
    T. Masuda
    J. Phys. Soc. Japan 64 (1995) 3573-3574.

Translation

  1. Symmetries in Painleve equations
    M. Noumi and Y. Yamada
    Sugaku Expositions 17 (2004) 203-218.
    originally appeared in Japanese in Sugaku 53 (2001) 62-75.